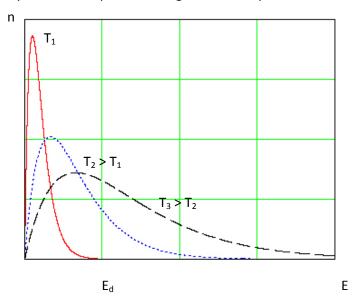
La diffusion

Elle dépend du temps et de la température. Toutes les transformations à l'état solide sont concernées à l'exception notable de la transformation martensitique qui est instantanée et ne dépend que de la température.

Les atomes se déplacent d'autant mieux qu'il y a des lacunes dans le réseau cristallin et qu'ils sont petits. Une température élevée favorise la diffusion.

On peut imaginer qu'un bloc de cuivre pur collé à un bloc de nickel pur deviendra un bloc homogène de solution solide à 50 % au bout d'un temps suffisamment long et à température suffisamment élevée.

Les atomes diffusent s'ils ont une énergie supérieure à E_d . Plus la température augmente, plus il y a d'atomes qui ont l'énergie suffisante pour diffuser.



On a ci-dessus la représentation de la distribution de Maxwell Boltzmann qui représente le nombre de molécules en proportion ayant une énergie E pour une température donnée. Si l'énergie E_d est nécessaire pour assurer la diffusion, on voit que quasiment aucun atome ne diffusent à la température T_1 , plus à T_2 et beaucoup à T_3 .

On notera que la distribution est de la forme : $n=4\pi\left(\frac{m}{2\pi kT}\right)^{3/2}v^2e^{-\frac{1}{2}mv^2}$ où m est la masse d'un atome, k = $\frac{R}{N}$ = $\frac{8,32}{6,02.10^{23}}$ = 1,38. 10^{-23} J.K⁻¹ la constante de Boltzmann, v la vitesse des atomes et T la température. L'énergie correspondra à E = ½ mv², l'énergie cinétique des atomes. On a aussi $\int_0^\infty n(v)dv=1$

1. Les lois de la diffusion

On les appelle les lois de Fick. Elles sont analogues aux lois de transfert de la chaleur.

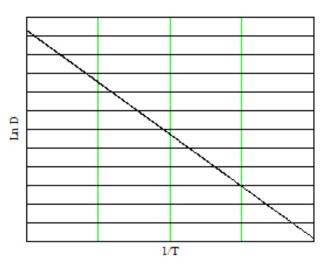
a. Le coefficient de diffusion

D est le coefficient de diffusion en m².s⁻¹. D augmente avec la température et dépend de la l'énergie de diffusion. Il est donné par la loi d'Arrhenius

 $D = D_0 e^{-\frac{E_d}{RT}}$ où R est la constante des gaz parfaits et T la température en K. D₀ et E_d dépendent de l'espèce suffisante et du milieu de diffusion.

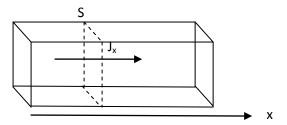
Espèce diffusante	Milieu de diffusion	D ₀ en m ² .s ⁻¹	E _d en kJ.mol ⁻¹
Cu	Ni	2,7.10 ⁻⁵	256
С	Fe_{γ}	2,3.10 ⁻⁵	148

La courbe Ln D en fonction de 1/T est donc une droite :



b. La 1^{ère} loi de Fick

On considère la diffusion d'un élément à travers une surface.



Le flux de matière qui la traverse est : $J_x = \frac{1}{S} \frac{dm}{dt} = -D \frac{\partial c}{\partial x}$ où J_x est en kg.m⁻².s⁻¹ et c en kg.m⁻³ est la concentration de l'élément diffusant dans le milieu de diffusion.

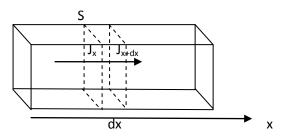
c. la 2^{ème} loi de Fick

Elle s'écrit :
$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$
.

On notera que cette loi est analogue à l'équation de propagation de la chaleur :

$$\frac{\partial \mathbf{T}}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$$
 avec D = $\frac{\lambda}{\rho c}$ où c est ici la chaleur massique.

On peut la démontrer :



- En x, il entre pendant dt, une masse $dm_e = S J_x dt$
- En x + dx, il sort dm_s = S J_{x+dx} dt = S (J_x + $\frac{\partial J_x}{\partial x}$ dx) dt

Au bilan, la variation de masse dans dV = S dx est :

dm = dm_e - dm_s =
$$-S \frac{\partial J_x}{\partial x}$$
 dx dt = $-dV \frac{\partial J_x}{\partial x} dt$.

On a donc:
$$\frac{\partial J_x}{\partial x} = -\frac{\partial x}{\partial t} = -\frac{\partial c}{\partial t}$$
 soit $\frac{\partial c}{\partial t} = -\frac{\partial J_x}{\partial x} = D\frac{\partial c^2}{\partial x^2}$

2. Conséquences des lois de Fick

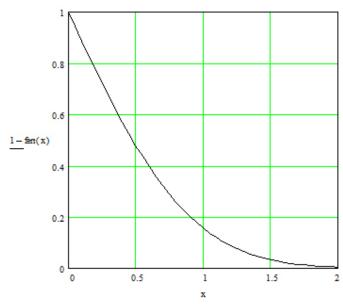
a. Solution de la 2^{nde} loi de Fick

La solution est de la forme :
$$(c - c_0)/(c_\infty - c_0) = erf(u)$$

avec $erf(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-v^2} dv$ et $v = \frac{x}{2\sqrt{Dt}}$

On trouvera en annexe les valeurs de erf (u) et le graphe correspondant. En général, on préfère la solution sous la forme :

 $(c - c_{\infty})/(c_0 - c_{\infty}) = (1 - erf(u))$ dont la représentation graphique est :



b. Equivalence de traitements

De la solution précédente, 2 traitements sont équivalents si :

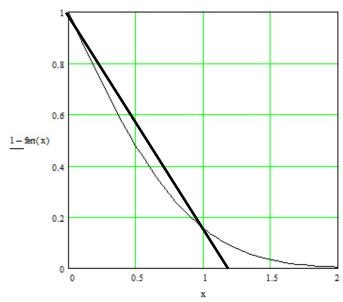
$$\frac{x}{2\sqrt{Dt}}$$
 = Cte donc Dt = Cte soit finalement t $e^{-\frac{E_d}{RT}}$ = Cte

Exemple:

En cémentation, considérons D = 6.10^{-12} m².s⁻¹, t = 4 h à 900 °C et D = $5,3.10^{-11}$ m².s⁻¹ à 1100 °C. On a une durée de ½ heure environ. L'inconvénient majeur est le grossissement du grain.

c. Profondeur de diffusion

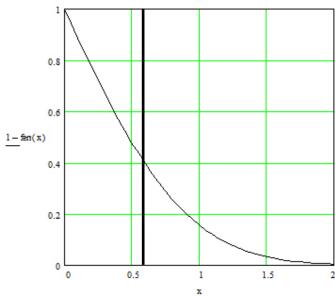
Il est utile de noter que $\int_0^\infty (1 - \operatorname{erf}(v)) dv = \frac{1}{\sqrt{\pi}}$ On peut calculer $\int_0^2 (1 - \operatorname{erf}(v)) dv = \int_0^3 (1 - \operatorname{erf}(v)) dv = 0.563 = \frac{1}{\sqrt{\pi}}$



On a ainsi la surface que délimite la courbe telle que :

 $\int_0^\infty (1 - \operatorname{erf}(v)) dx = \frac{1}{\sqrt{\pi}} = \frac{1}{2} x_f, \text{ avec } x_f \text{ profondeur fictive limite.}$

On définit aussi la profondeur de cémentation x_c :



Ici on obtient : $\int_0^\infty (1 - \operatorname{erf}(v)) dx = \frac{1}{\sqrt{\pi}} = x_c.$

On remarque que $x_c = \frac{1}{2} x_f$, ce qui est aussi confirmé graphiquement.

Comme, $v = \frac{x}{2\sqrt{Dt}}$, on en déduit que :

$$\begin{split} dv &= \frac{dx}{2\sqrt{D\,t}}\,\mathrm{d'où} \int_0^\infty (1-\mathrm{erf}\,(v))dx = \int_0^\infty (1-\mathrm{erf}\,(v))2\,\sqrt{Dt}dv = 2\,\frac{\sqrt{Dt}}{\sqrt{\pi}} \\ \mathrm{et\,finalement}: \mathsf{x_c} &= \frac{1}{2}\,\mathsf{x_f} = 2\,\sqrt{\frac{Dt}{\pi}}. \end{split}$$

Exemple:

En cémentation, D = 6.10^{-12} m².s⁻¹, t = 3 h d'où x_c = 0,28 mm