Exercices sur les lasers

- 1. L'angle de divergence d'un faisceau laser est donné par la relation : $\sin\theta = \frac{0.6\,\lambda}{r}$. Calculer le diamètre de la tache portée par un laser sachant que la distance Terre-Lune est de 380000 km et que le laser émet sur une longueur d'onde λ = 0,633 μ m avec un rayon de faisceau de sortie r = 0,5 mm.
- 2. Calculer le nombre de photons émis par seconde d'un laser Hélium-Néon de puissance 1 mW émettant sur une longueur d'onde λ = 0,633 μ m. On donne la constante de Planck : h = 6,62.10⁻³⁴ J.s
- 3. En combien de temps un laser à CO₂ de puissance 1500 W et de surface utile 1 mm² élève la température d'1 mm³ d'acier de 900 °C?

 On donne la masse volumique de l'acier 7,8 g.cm⁻³ et sa chaleur massique moyenne 500 J.kg⁻¹.°C⁻¹.
- 4. Pour un type d'atomes donné, le nombre d'électrons dans un état d'énergie donné est donné par la loi d'Arrhénius n = N $e^{-\frac{E}{RT}}$. Calculer la concentration en électrons excités par rapport aux électrons dans leur état fondamental pour une lampe au tungstène à 3000 K et en considérant que la longueur d'onde moyenne de la lumière émise est de 0,55 μ m.

On donne la constante des gaz parfaits $R = 8,32 \text{ J.mol}^{-1} \text{ K}^{-1}$, le nombre d'Avogadro $\mathfrak{N} = 6,02.10^{23} \, \text{mol}^{-1}$, la vitesse de la lumière $c = 3.10^5 \, \text{km.s}^{-1}$ et la constante de Planck $h = 6,62.10^{-34} \, \text{J.s.}$