
Exercices sur les solutions solides

- 1. Un alliage fer-aluminium comporte 50 % en masse d'aluminium.
 - a. Quel est le pourcentage atomique en aluminium?
 - b. Calculer la masse volumique de l'alliage en utilisant la règle des mélanges.

On rappelle que : V = V_{Fe} + V_{Al} puis $\rho = \frac{m}{v}$.

On donne les masses molaires $M_{Al} = 27 \text{ g.mol}^{-1} \text{ et } M_{Fe} = 56 \text{ g.mol}^{-1}$

- 2. Soit des solutions solides aluminium or. L'aluminium et l'or suivent tous les 2 le réseau cristallin cfc et ils ont des rayons atomiques voisins.
 - a. Justifier que les 2 solutions solides primaires sont très peu étendues.
 - b. Une sur-structure est telle que les atomes d'or sont en position cfc et les atomes d'aluminium sont aux centres des 1/8^{ème} de cube. Quelle est la formule stœchiométrique correspondante ? Représenter la maille.
 - c. Il existe un composé Al_3Au_5 . C'est un composé électronique de concentration électronique 7/4. Quels sont les nombres d'oxydation associés à l'aluminium et à l'or ?
 - d. Dans ces conditions Al₃Au₅ est-il aussi un composé électronique ?
- 3. Soit le diagramme d'équilibre des alliages niobium-titane.

- a. Calculer la composition atomique d'un alliage niobium-titane à 40 % en masse de niobium.
- b. Calculer la composition en phases de l'alliage à 40 % en masse de niobium à la température de 2000 °C.