Exercices sur les transferts de chaleur et la sévérité de trempe

Exercice n°1

On considère le diagramme TRC de l'acier 35 NC 6.

- 1. Calculer t_{700} et v_{700} correspondant à la courbe de refroidissement la plus rapide.
- 2. On considère la courbe de refroidissement aboutissant à 26 HRC.
 - a. Calculer t₇₀₀.
 - b. Calculer v_{700} et en déduire le coefficient k de la loi de Newton v = -k ($T T_f$).
 - c. Calculer t₃₀₀ à partir de la loi de Newton.
 - d. Quelle est valeur déterminée sur la courbe. Expliquer.

Exercice n°2

On réalise le chauffage de 2 barres de rayon r suffisamment longues avec le même four.

1. Au bout de 2 heures, les barres sont en régime stationnaire. On note les températures en fonction de la distance au thermomètre le plus proche du four.

Acier	Distance en m	Température en °C		
	0	77,4		
	0,2	37		
	0,4	25,8		
	0,6	23,4		
	0,8	21,3		

Cuivre	Distance en m	Température en °C	
	0	60,4	
	0,2	50	
	0,4	39,4	
	0,6	33,6	
	0,8	29,6	

- a. Tracer les courbes Ln ($T-T_{amb}$) en fonction de la distance. Déterminer les pentes k. On prendra une température ambiante T_{amb} = 20 °C.
- b. Justifier que $k=\left(\frac{2h}{r\lambda}\right)^{1/2}$ où h est le coefficient de convection thermique commun aux 2 barres et λ le coefficient de conduction thermique.
- c. Calculer le coefficient de convection h. En déduire le coefficient de conduction de l'acier. On prendra $\lambda_{cu} = 400 \text{ W.m}^{-1}.\text{K}^{-1}$ et r = 1,25 cm.
- 2. On considère que le début du chauffage suit la loi de Fick. On a ainsi :

$$(T - T_{\infty})/(T_0 - T_{\infty}) = (1 - erf(u))$$

$$\operatorname{avec} erf(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-v^2} dv \text{ et } v = \frac{x}{2\sqrt{D}t} \text{ et } D = \frac{\lambda}{\rho c}$$

En se plaçant en x = 0.2 m sur la barre en cuivre, calculer sa température après 5 mn, 10 mn, puis 20 mn de chauffage.

On prendra pour le cuivre :

- la chaleur massique c = 380 J.kg⁻¹.K⁻¹
- et la masse volumique $\rho = 8920 \text{ kg.m}^{-3}$.

Exercice n°3

Les métaux purs suivent souvent la loi de Wiedman-Franz : $L=\frac{\lambda\rho}{T}$ = 2,45.10⁻⁸ Ω . W. K^{-2} où λ est la conductivité thermique, ρ la résistivité et T la température du matériau.

- 1. Justifier la relation et les unités de L.
- 2. Calculer la conductivité thermique de l'argent à la température ambiante T = 20 °C sachant que sa résistivité électrique est ρ = 1,6 10⁻⁸ Ω .m.

Exercice n°4

Calculer la sévérité H de l'eau d'après Grossmann en utilisant la relation issue des nombres de Nusselt $N=\frac{hd}{\lambda}$, Prandtl $P=\frac{\eta c_p}{\lambda}$ et Grashof $G=\frac{\alpha g\Delta T\rho^2d^3}{\eta^2}$. Les 3 nombres suivent le plus souvent une relation de la forme : $N=m(PG)^n$ avec m = 0,135 et n = 1/3 et par conséquent indépendante de la dimension d de la pièce.

On donne pour l'eau : λ = 0,6 W m⁻¹ K⁻¹, ρ = 10³ kg.m⁻³, α = 2,1 10⁻⁴ K⁻¹, η = 10⁻³ PI, c_p = 4180 J kg⁻¹ K⁻¹. On prendra Δ T = 850 °C, λ_{acier} = 25 W m⁻¹ K⁻¹ et g = 9,8 m s⁻² .

Exercice n°5

On réalise une trempe d'un rond en acier avec une huile de sévérité H = 0,025 mm⁻¹. On mesure une durée de refroidissement Δ t = 100 s entre 700 et 300 °C à la surface de la pièce. En déduire, à l'aide de l'abaque de l'OTUA, le diamètre de la pièce, la durée de refroidissement entre 700 et 300 °C à cœur et celle pour r / R = 0.7.

Exercice n°6

La norme permet de calculer la sévérité H d'une huile de trempe à l'aide de la relation :

$$H = K \frac{v_{max}}{T_{v_{max}} - T_{bain}}$$

 $H=K\frac{v_{max}}{T_{v_{max}}-T_{bain}}$ Une pièce est trempée dans de l'huile de coefficient de convection thermique h. Justifier la relation donnant les échanges de chaleur par convection à la surface de la pièce de masse m, de chaleur massique c et de conductivité thermique λ : dQ = mc dT = h S ΔT dt .

- 1. En déduire la relation : $H = \frac{h}{2\lambda} = K \frac{dT}{dt} \frac{1}{\Delta T}$ et préciser la relation entre K, m, c, S et λ .
- 2. Préciser les conditions d'utilisation de la relation par la norme.
- 3. On donne la courbe de refroidissement et la courbe dérivée d'une huile appelée lloquench 415. On trempe une éprouvette en argent initialement à 800 °C dans l'huile à 50 °C. Déterminer les valeurs T_1 , T_2 , v_{max} et la température T_{max} correspondante.
- 4. Calculer la constante K sachant que la sévérité de l'huile est H = 20,5 m⁻¹.
- 5. L'éprouvette est en argent de masse volumique $\rho = 10.5$ g cm⁻³ et de chaleur massique c = 235 J.kg⁻¹.°C⁻¹, de forme cylindrique de 16 mm de diamètre et de 48 mm de hauteur. En déduire la valeur de la conductivité thermique de l'argent et commenter le résultat obtenu.

Exercice n°7

On considère le régime stationnaire d'une barre en acier de rayon r = 12,5 mm et de conductivité thermique $\lambda = 50 \text{ W m}^{-1} \text{ K}^{-1}$ dont une extrémité est chauffée dans un four à 400 °C et l'autre reste à la température ambiante T_{amb} = 20 °C. On fait après avoir attendu un temps suffisant le relevé de température suivant :

x en m	0	0,25	0,6	0,8	1	1,2	1,4
T en °C	400	400	90	42	28	23	20

- 1. Tracer la courbe Ln $(T T_{amb}) = f(x)$. En déduire la pente k de la partie linéaire et écrire la relation T = g(x) correspondante.
- 2. Calculer la valeur du coefficient de convection h d'échange entre la barre et l'air et en déduire la valeur de la sévérité H de l'air d'après Grossmann.
- 3. Pendant la mise en température de la barre, celle ci suit l'équation de propagation de la chaleur:

$$\frac{\partial^2 T}{\partial x^2} = \frac{\rho c}{\lambda} \frac{\partial T}{\partial t} .$$

La barre a pour chaleur massique c = 450 J kg⁻¹°C⁻¹ et masse volumique ρ = 7800 kg.m⁻³.

On relève pour la position x = 0.6 m, les valeurs :

t en s	1800	7200	
T en °C	26	88	

Calculer la valeur de la constante $D=\frac{\lambda}{\rho c}$, préciser les unités et vérifier que les 2 couples de valeurs vérifient la relation : $(T - T_{\infty})/(T_0 - T_{\infty}) = (1 - erf(u))$