Partie commune

Exercice n°1

La température d'un bain de trempe est mesurée en plongeant un thermocouple de type K directement relié à un voltmètre.

- 1. On mesure une tension U = 1,325 mV. La température de l'atelier est T = 23 °C. Quelle est la température du bain ?
- 2. Les pièces trempées portent le bain à une température de 67 °C. Quelle est la nouvelle tension indiquée par le voltmètre ?
- 3. Pourquoi préfère-t-on les thermocouples de type K à d'autres types de thermocouples ?

On donne le tableau de valeurs de tension d'un thermocouple de type K en fonction de la température où les valeurs de tension sont données en μV :

I+x/°C	0	1	2	3	4	5	6	7	8	9	t _{Al} /°C
_	0	39	79	119	158	198	238	277	317	357	0
10	397	437	477	517	557	597	637	677	718	758	10
20	798	838	879	919	960	1000	1041	1081	1122	1162	20
30	1203	1244	1285	1325	1366	1407	1448	1489	1529	1570	30
40	1611	1652	1693	1734	1776	1817	1858	1899	1940	1981	40
50	2022	2064	2105	2146	2188	2229	2270	2312	2353	2394	50
60	2436	2477	2519	2560	2601	2643	2684	2726	2767	2809	60
70	2850	2892	2933	2975	3016	3058	3100	3141	3183	3224	70
80	3266	3307	3349	3390	3432	3473	3515	3556	3598	3639	80
90	3681	3722	3764	3805	3847	3888	3930	3971	4012	4054	90

4. Une thermistance est elle aussi plongée dans le bain de trempe. On a noté les mesures suivantes :

T en °C	R en Ω
20	855
70	427

Sachant que la thermistance suit une loi de la forme $R = Ae^{B/T}$ avec A et B constantes et où T est en K (T K = T °C + 273).

- a. Calculer la valeur de sa résistance pour la température T = 55 °C.
- b. Calculer la sensibilité $s = \frac{dR}{dT}$ à cette température de 55 °C.
- 5. La viscosité de l'huile du bac de trempe est mesurée avec un viscosimètre à écoulement où l'on mesure la durée d'écoulement d'un volume donné.

On admettra la relation : $\eta = \frac{\rho g}{8V} \pi R^4 t$.

On donne la masse volumique de l'huile ρ = 880 kg.m⁻³. Le volume du réservoir du viscosimètre est V = 1,00 cm³, son rayon R = 0,5 mm.

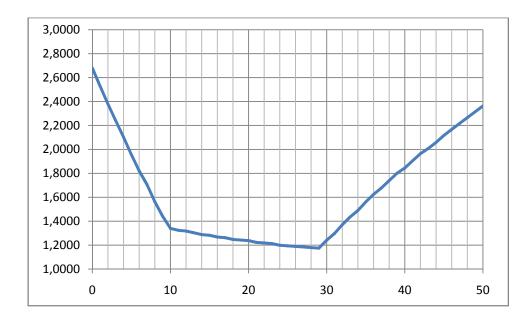
On donne la valeur de $g = 9.8 \text{ m.s}^{-2}$.

- a. Déterminer quelles sont les unités SI de la viscosité η ? Quel est le nom de cette unité ?
- b. Calculer la viscosité de l'huile sachant que la durée de l'écoulement est t = 60 s.

Exercice n°2

Un microscope est constitué d'un objectif de distance focale f_1 = 5 mm et d'un oculaire de distance focale f_2 = 5 cm. La distance entre leurs centres optiques est O_1O_2 = 20 cm.

On rappelle la relation donnant le grossissement $G=PP\frac{\Delta}{f_1f_2}$ avec $\Delta=\mathsf{F'}_1\mathsf{F}_2$ et le punctum proximum PP = 25 cm.

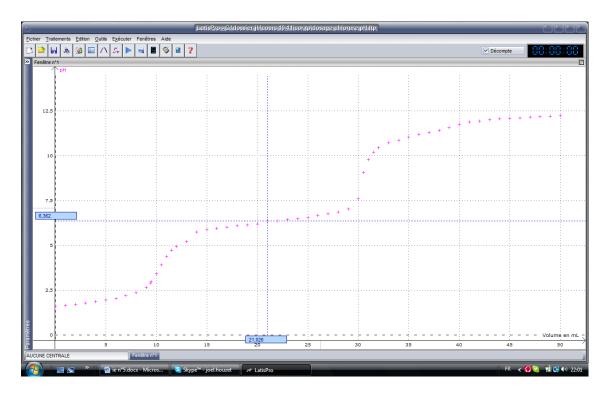

On rappelle la relation de conjugaison des lentilles minces convergentes dans le cas objet réelimage réelle : $\frac{1}{OA} + \frac{1}{OA\prime} = \frac{1}{f}$

- 1. Faire le schéma de principe de la construction d'une image A'B' d'un objet AB à travers un microscope.
- 2. Calculer le grossissement du microscope décrit.
- 3. On observe l'image au punctum remotum donc à l'infini.
 - a. Calculer la position O₁A de l'objet.
 - b. Calculer la position O₂C du cercle oculaire.
- 4. On observe l'image d'un acier avec un microscope de grossissement G = 200. Sur l'image, on assimile un grain à un carré de coté a = 5 mm.
 - a. Calculer le nombre n de grains par mm² pour l'acier considéré.
 - b. Calculer l'indice de grosseur de grain G correspondant. On rappelle la relation donnée par la norme : $n=8 \ x \ 2^G$.
- 5. Quels sont les avantages et inconvénients du microscope électronique par rapport au microscope optique.

Exercice n°3

Un mélange de 20 mL constitué de 10 mL d'une solution de chlorure de zinc de formule $ZnCl_2$ à 0,1 mol. L^{-1} et de 10 mL d'une solution d'acide chlorhydrique à 0,1 mol. L^{-1} est dosée par de la soude.

1. Le dosage est suivi par conductimétrie. On obtient la courbe suivante de la conductivité γ en fonction du volume de soude versé en mL :



Ecrire les réactions et expliquer la forme de la courbe.

2. Le dosage est suivi aussi par pH-métrie.

On note, sur la courbe jointe ci-dessous, un pH = 6,4 pour un volume de soude versée V = 21 mL.

Le produit de solubilité de l'hydroxyde de zinc est K_s = $[Zn^{2+}][OH^-]^2$. On rappelle le produit ionique de l'eau : $[H^+][OH^-] = 10^{-14}$

- a. Justifier et calculer la concentration en ions $\operatorname{Zn}^{2+}:[Zn^{2+}]=1,2.10^{-2}\ mol.\ L^{-1}$
- b. Calculer la valeur de $pK_s = -log K_s$

Partie spécifique

Exercice n°1

Un cristal suit le réseau CC et subit une traction suivant la direction $[2\overline{1}1]$.

- 1. Définir un système de glissement.
- 2. Donner la notation de Miller d'une de la famille de ses directions de glissement.
- 3. Calculer le facteur de Schmid s = cos p cos d correspondant à une direction de glissement [111] dans un plan ($1\overline{1}0$).
- 4. Commenter le résultat obtenu sachant que $\tau = \sigma s$ où τ est la cission et σ la contrainte.
- 5. Représenter dans un cube la direction [$11\overline{1}$], le plan ($1\overline{1}0$) et la direction [$2\overline{1}1$].
- 6. Représenter dans un cube la direction $[1\bar{1}0]$ et le plan $(11\bar{1})$

Exercice n°2

Le potassium $^{40}_{19}K$ est radioactif β^{-} .

- 1. Ecrire la structure électronique en couches et sous-couche du potassium.
- 2. Ecrire la réaction de désintégration correspondante. On donne ₁₇Cl, ₁₈Ar, ₂₀Ca, ₂₁Sc.
- 3. La période radioactive est T = 1,25.10⁹ ans. Quelle est la durée écoulée afin que l'activité radioactive ait été diminuée par de 10 % ?
- 4. Calculer la masse volumique du noyau supposé sphérique. On donne le nombre d'Avogadro N = $6.02.10^{23}$ mol⁻¹ et le rayon d'un noyau de masse atomique A : R = $1.2 \text{ A}^{1/3}$ en Fermi (1F = 10^{-15} m)
- 5. Les photons émis ont une énergie de 1,31 MeV. Calculer leur longueur d'onde. On donne la vitesse de la lumière dans le vide $c = 3.10^5$ km.s⁻¹ et la constante de Planck $h = 6,62.10^{-34}$ J.s ainsi que la charge de l'électron e = -1,6.10⁻¹⁹ C.
- 6. Expliquer l'intérêt de la gammagraphie par rapport l'analyse d'un matériau par exemple aux rayons X ?

Exercice n°3

Une atmosphère de cémentation contient en volume 20,5 % de CO et 39 % de H_2 sous la pression atmosphérique à la température de 920 °C.

On donne l'équilibre de Boudouard : $CO_2 + C_\gamma \Leftrightarrow 2 CO$

On rappelle que : T K = T $^{\circ}$ C + 273

	H _{0f} 298 en kJ.mol ⁻¹	S _{0f} 298 en J.mol ⁻¹ .K ⁻¹
C_gr	0	5,7
СО	-110,6	198
CO ₂	-393,6	213,7

- 1. Calculer la valeur de la constante K_p à 920 °C.
- 2. Indiquer 2 méthodes permettant de mesurer le potentiel carbone de l'atmosphère.
- 3. Le potentiel carbone de cette atmosphère est X % = 0,9. Calculer l'activité a_c du carbone.

On donne la relation d'Ellis Gunnarson : a_C = 1,07 $\frac{X\%}{100-19.5 \, X\%}$ $e^{4798.6}/_T$.

- 4. Calculer le % en volume de CO₂ de l'atmosphère.
- 5. L'atmosphère de cémentation peut être obtenue soit à partir du craquage du méthanol, soit à partir de la combustion incomplète du méthane.
 - a. Ecrire les réactions chimiques correspondantes.
 - b. Comparer les 2 méthodes.
- 6. Quels sont les avantages d'un traitement superficiel par induction à un traitement sous atmosphère ?