1.	Le fer suit le réseau cubique centré CC. Calculer son rayon atomique. On donne sa masse volumique $\rho=7.9~\rm g.cm^{-3}$, sa masse molaire $M=56~\rm g.mol^{-1}$ et le nombre d'Avogadro $N=6,02.10^{23}~\rm mol^{-1}$.
2.	Calculer le rayon de l'interstice octaédrique de l'aluminium. L'aluminium suit le réseau cubique faces centrées CFC et son paramètre de maille est a = 0,4045 nm.
3.	Quelles sont les notations de Miller des 4 premiers plans réticulaires d'un réseau cubique faces centrées CFC ?
4.	Quelles sont les notations de Miller de la direction de densité maximum et du plan la contenant dans un réseau cubique centré CC ?
5.	On considère le couple $Cr_2O_7^{2-}/Cr^{3+}$. Ecrire et équilibrer la réaction de réduction en milieu acide.

6. On dispose d'une solution de soude 0,1 mol.L⁻¹, d'une solution d'acide éthanoïque 0,1 mol.L⁻¹ et d'une solution d'éthanoate de sodium 0,1 mol.L⁻¹. Donnez 2 méthodes afin d'obtenir une solution de pH = 4,75.

On donne le pK_a (CH₃COOH/CH₃COO⁻) = 4,75.

- 7. L'hydroxyde de magnésium a un produit de solubilité $K_s = \left[\mathbf{Mg^{2+}}\right] \left[\mathbf{OH^{-}}\right]^2 = 6,3.10^{-10}$. Quel est le pH permettant l'apparition d'un précipité pour une concentration $\left[\mathbf{Mg^{2+}}\right] = c = 10^{-2}$ mol.L⁻¹.
- 8. Donner la structure électronique en couches et sous-couches de l'élément argent 47 Ag.

9. Quelle est la forme de magnétisme de l'argon ₁₈ Ar ? Quelle est la forme de magnétisme de l'aluminium ₁₃ Al ?

10. Au microscope, dans un cercle de 79,8 mm de diamètre, on observe 25 grains. Sachant que le grossissement du microscope utilisé est de 250, calculer l'indice de grosseur de grains G de l'échantillon en utilisant la relation : $n=8 \times 2^G$ où n est le nombre de grains par mm^2 .

11.	On refroidit un échantillon dans un liquide à la température $T_f = 50^{\circ}\text{C}$. Sa température initiale est $T_i = 900^{\circ}\text{C}$. Il passe de 900 à 700 $^{\circ}\text{C}$ en 5 s. Calculer le coefficient de la loi de Newton et en déduire la vitesse v_{700} .
12.	Pourquoi dit-on d'une atmosphère de cémentation obtenue à partir de la combustion du méthane, qu'elle est endothermique ?
	Donnez 2 méthodes afin d'obtenir une atmosphère de cémentation de composition 20 % CO, 40 % H_2 et 40 % N_2 . On considère un faisceau d'électron accéléré sous une tension $U=20$ kV. Quelle est la vitesse des électrons et la longueur d'onde associée ? On donne la charge de l'électron $e^-=-1,6.10^{-19}$ C, sa masse $m=9,1.10^{-31}$ kg et la constante de Planck $h=6,62.10^{-34}$ J.s.
15	
15.	En considérant la solidification d'un corps pur, expliquer le phénomène de surfusion.

16. Une pièce est portée à 1000 °C. Quelle est son émittance et quelle est la longueur d'onde correspondant au maximum de son rayonnement ?

On donne la constante de Planck $\sigma = 5,7.10^{-8}$ W.m⁻².K⁻⁴, la loi de Wien λ T = 2,9.10⁻³ mK et T K = T $^{\circ}$ C + 273.

17. Quelle épaisseur de Plomb permet d'atténuer l'intensité d'un rayonnement de 99 % ? On donne le coefficient d'absorption massique $\mu = 0,3$ cm².g⁻¹ et la masse volumique $\rho = 11,3$ g.cm⁻³.

18. Faire un schéma et expliquer ce qu'on appelle chauffage par des courants de Foucault ?

19. Une cémentation se réalise à 900 °C en 2 h. Quelle serait la durée à 950 °C ? L'enthalpie de réaction est $\Delta H_a = 134 \text{ kJ.mol}^{-1}$, le coefficient de diffusion $D_0 = 2.10^{-5} \text{ m}^2.\text{s}^{-1}$. On donne la relation $\mathbf{D} = \mathbf{D_0} \mathbf{e}^{-\Delta \mathbf{H}/\mathbf{RT}}$, ainsi que T K = T °C + 273 et R = 8,32 J.mol⁻¹.K⁻¹.

20. Pourquoi les courbes TTT d'un acier comporte une forme de nez avec un minimum du temps d'incubation ?