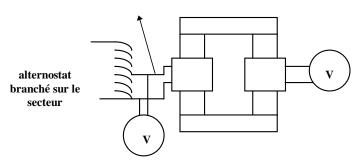

TP analyse magnétique

1. Utilisation de CES


Rechercher dans CES des matériaux magnétiques et préciser leur utilisation.

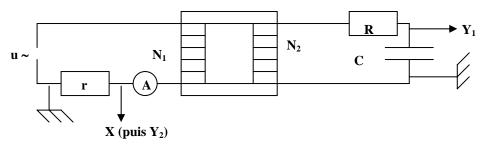
2. Le transformateur à vide

Constituer avec le transformateur démontable le circuit suivant en réglant l'alternostat sur une tension maximum de 24 V, la bobine du primaire du transformateur comporte n₁ spires, celle du secondaire n₂ spires :

la prise du primaire, munie des fiches de liaisons au voltmétre, est branchée sur la sortie de l'alternostat

Appeler le prof avant la mise en route.

On vérifiera la relation donnant le rapport de transformation : $m = \frac{U_2}{U_1} = \frac{n_2}{n_1}$ en faisant varier la tension d'entrée U₁ et le nombre de spires n₂.

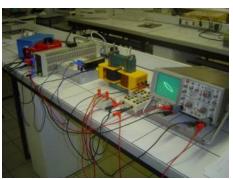

Remplir le tableau avec 4 ou 5 mesures différentes :

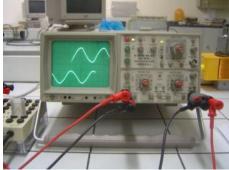
n ₂	n_2/n_1	U_1	U ₂	U_2/U_1
etc				

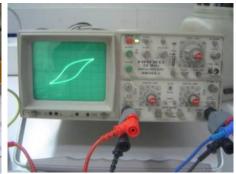
Conclure.

3. Obtention d'un cycle d'hystérésis

On réalisera le circuit :

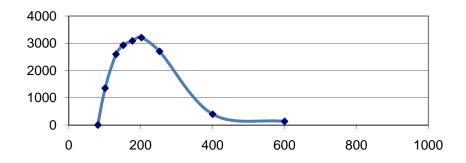



Appeler le prof avant la mise en route.


a. On prendra pour le circuit primaire : r = 33 Ω et une bobine de N₁ = 400 spires Et pour le circuit secondaire : R = 1 M Ω , C = 1 μ F et N₂ = 72 spires. Le circuit sera alimenté avec un alternostat relié au secteur (220 V ; 50 Hz) et un transformateur d'isolement.

On réglera l'intensité à I_1 = 270 mA.

Visualiser simultanément et représenter B = f(t), H = f(t), puis B = f(H).



- b. Déterminer pour un cycle donné, les valeurs de H_c l'excitation coercitive et B_r le champ magnétique rémanent.
- c. En faisant varier I₁, tracer μ_r = f (H) donc μ_r = $\frac{B}{\mu_{0H}}$. Calculer μ_r . On rappelle H = $\frac{N_1}{L}I$ et u_c = $\frac{N_2BS}{RC}$ donc B = u_c $\frac{RC}{N_2S}$. On a μ_0 = 4 π 10⁻⁷ u SI. On vérifiera que L = 0,48 m, S = a² = (4.10⁻²)² m².

I en A	X en	Y en	Calibre	Calibre				
	cm	cm	sur X	sur Y		A.m ⁻¹	T	

On obtient une courbe de ce type :

